Convolution, Average Sampling, and a Calderon Resolution of the Identity for Shift-invariant Spaces

نویسندگان

  • AKRAM ALDROUBI
  • QIYU SUN
  • WAI-SHING TANG
چکیده

In this paper, we study three interconnected inverse problems in shift invariant spaces: 1) the convolution/deconvolution problem; 2) the uniformly sampled convolution and the reconstruction problem; 3) the sampled convolution followed by sampling on irregular grid and the reconstruction problem. In all three cases, we study both the stable reconstruction as well as ill-posed reconstruction problems. We characterize the convolutors for stable deconvolution as well as those giving rise to ill-posed deconvolution. We also characterize the convolutors that allow stable reconstruction as well as those giving rise to ill-posed reconstruction from uniform sampling. The connection between stable deconvolution, and stable reconstruction from samples after convolution is subtle, as will be demonstrated by several examples and theorems that relate the two problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Localization of Calderon Convolution in the Fourier Domain

In this paper, we introduce and study the localization of Calderon convolution for a finitely generated shift-invariant space in the Fourier domain. §

متن کامل

Shift-Invariant and Sampling Spaces Associated with the Special Affine Fourier Transform

The Special Affine Fourier Transformation or the SAFT generalizes a number of well known unitary transformations as well as signal processing and optics related mathematical operations. Shift-invariant spaces also play an important role in sampling theory, multiresolution analysis, and many other areas of signal and image processing. Shannon’s sampling theorem, which is at the heart of modern d...

متن کامل

Shift-Invariant Spaces and Linear Operator Equations

In this paper we investigate the structure of finitely generated shift-invariant spaces and solvability of linear operator equations. Fourier transforms and semi-convolutions are used to characterize shift-invariant spaces. Criteria are provided for solvability of linear operator equations, including linear partial difference equations and discrete convolution equations. The results are then ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004